Zero-Shot Learning with Structured Embeddings
نویسندگان
چکیده
Despite significant recent advances in image classification, fine-grained classification remains a challenge. In the present paper, we address the zero-shot and few-shot learning scenarios as obtaining labeled data is especially difficult for fine-grained classification tasks. First, we embed state-of-the-art image descriptors in a label embedding space using side information such as attributes. We argue that learning a joint embedding space, that maximizes the compatibility between the input and output embeddings, is highly effective for zero/few-shot learning. We show empirically that such embeddings significantly outperforms the current state-of-the-art methods on two challenging datasets (Caltech-UCSD Birds and Animals with Attributes). Second, to reduce the amount of costly manual attribute annotations, we use alternate output embeddings based on the word-vector representations, obtained from large text-corpora without any supervision. We report that such unsupervised embeddings achieve encouraging results, and lead to further improvements when combined with the supervised ones.
منابع مشابه
Neighborhood Sensitive Mapping for Zero-Shot Classification using Independently Learned Semantic Embeddings
In a traditional setting, classifiers are trained to approximate a target function f : X → Y where at least a sample for each y ∈ Y is presented to the training algorithm. In a zero-shot setting we have a subset of the labels Ŷ ⊂ Y for which we do not observe any corresponding training instance. Still, the function f that we train must be able to correctly assign labels also on Ŷ . In practice,...
متن کاملLearning Structured Semantic Embeddings for Visual Recognition
Numerous embedding models have been recently explored to incorporate semantic knowledge into visual recognition. Existing methods typically focus on minimizing the distance between the corresponding images and texts in the embedding space but do not explicitly optimize the underlying structure. Our key observation is that modeling the pairwise image-image relationship improves the discriminatio...
متن کاملA Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning
Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our ...
متن کاملVisually Aligned Word Embeddings for Improving Zero-shot Learning
Zero-shot learning (ZSL) highly depends on a good semantic embedding to connect the seen and unseen classes. Recently, distributed word embeddings (DWE) pre-trained from large text corpus have become a popular choice to draw such a connection. Compared with human defined attributes, DWEs are more scalable and easier to obtain. However, they are designed to reflect semantic similarity rather tha...
متن کاملZero-Shot Learning and Clustering for Semantic Utterance Classification
We propose two novel zero-shot learning methods for semantic utterance classification (SUC) using deep learning. Both approaches rely on learning deep semantic embeddings from a large amount of Query Click Log data obtained from a search engine. Traditional semantic utterance classification systems require large amounts of labelled data, whereas our proposed methods make use of the structure of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1409.8403 شماره
صفحات -
تاریخ انتشار 2014